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Abstract

Event Argument Extraction (EAE) aims at pre-
dicting event argument roles of entities in text,
which is a crucial subtask and bottleneck of
event extraction. Existing EAE methods ei-
ther extract each event argument roles inde-
pendently or sequentially, which cannot ade-
quately model the joint probability distribution
among event arguments and their roles. In this
paper, we propose a Bayesian model named
Neural Gibbs Sampling (NGS) to jointly ex-
tract event arguments. Specifically, we train
two neural networks to model the prior distri-
bution and conditional distribution over event
arguments respectively and then use Gibbs
sampling to approximate the joint distribution
with the learned distributions. For overcom-
ing the shortcoming of the high complexity of
the original Gibbs sampling algorithm, we fur-
ther apply simulated annealing to efficiently
estimate the joint probability distribution over
event arguments and make predictions. We
conduct experiments on the two widely-used
benchmark datasets ACE 2005 and TAC KBP
2016. The Experimental results show that our
NGS model can achieve comparable results to
existing state-of-the-art EAE methods. The
source code can be obtained from https://

github.com/THU-KEG/NGS.

1 Introduction

Event argument extraction (EAE) is a crucial sub-
task of Event Extraction, which aims at predicting
entities and their event argument roles in event
mentions. For instance, given the sentence “Fox’s
stock price rises after the acquisition of its entertain-
ment businesses by Disney”, the event detection
(ED) model will first identify the trigger word “ac-
quisition” triggering a Transfer-Ownership
event. Then, with the trigger word and event type,
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Figure 1: An example of event extraction, including
event detection and event argument extraction.

the EAE model is required to identify that “Fox”
and “Disney” are event arguments whose roles
are “Seller” and “Buyer” respectively. As ED
is well-studied in recent years (Liu et al., 2018a;
Nguyen and Grishman, 2018; Zhao et al., 2018;
Wang et al., 2019a), EAE becomes the bottleneck
and has drawn growing attention.

As EAE is the bottleneck of event extraction,
especially is also important for various NLP ap-
plications (Yang et al., 2003; Basile et al., 2014;
Cheng and Erk, 2018), intensive efforts have al-
ready been devoted to designing effective EAE sys-
tems. The early feature-based methods (Patward-
han and Riloff, 2009; Gupta and Ji, 2009) man-
ually design sophisticated features and heuristic
rules to extract event arguments. As the develop-
ment of neural networks, various neural methods
adopt convolutional (Chen et al., 2015) or recur-
rent (Nguyen et al., 2016) neural networks to au-
tomatically represent sentence semantics with low-
dimensional vectors, and independently determine
argument roles with the vectors. Recently, some
advanced techniques have also been adopted to fur-
ther enhance the performance of EAE models, such
as zero-shot learning (Huang et al., 2018), multi-
modal integration (Zhang et al., 2017) and weak
supervision (Chen et al., 2017).

However, above-mentioned methods do not
model the correlation among event arguments in
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event mentions. As shown in Figure 1, all event
arguments are correlated with each other. It is more
likely to see a “Seller” when you have seen a
“Buyer” and an “Artifact” in event mentions,
and vice versa. Formally, with xi denoting the
random variable of the i-th event argument candi-
date, the required probability distribution for EAE
is P (x1, x2, . . . , xn|o), where o is the observation
from sentence semantics of event mentions. The ex-
isting methods which independently extract event
arguments solely model P (xi|o), totally ignoring
the correlation among event arguments, which may
lead models to trapping in a local optimum.

Recently, some proactive works view EAE as
a sequence labeling problem (Yang and Mitchell,
2016; Nguyen et al., 2016; Zeng et al., 2018) and
adopt conditional random field (CRF) with the
Viterbi algorithm (Rabiner, 1989) to solve the prob-
lem. These explorations consider the correlation of
event arguments unintentionally. Yet limited by the
Markov property, their linear-chain CRF only con-
siders the correlation between two adjacent event
arguments in the sequence and finds a maximum
likelihood path to model the joint distribution, i.e,
these sequence models cannot adequately handle
the complex situation that each event argument is
correlated with each other in event mentions, just
like the example shown in Figure 1.

To adequately model the genuine joint distribu-
tion P (x1, x2, . . . , xn|o) rather than

∏n
i P (xi|o)

for EAE, we propose a Bayesian method named
Neural Gibbs Sampling (NGS) inspired by pre-
vious work (Finkel et al., 2005; Sun et al., 2014).
Gibbs sampling (Geman and Geman, 1987) is a
Markov Chain Monte Carlo (MCMC) algorithm,
which defines a Markov chain in the space of possi-
ble variable assignments whose stationary distribu-
tion is the desired joint distribution. Then, a Monte
Carlo method is adopted to sample a sequence of
observations, and the sampled sequence can be
used to approximate the joint distribution.

More specifically, for NGS, we first adopt a
neural network to model the prior distribution
Pp(xi|o) and independently predict an argument
role for each event argument candidate to get
an initial state for the random variable sequence
x1, x2, . . . , xn, which is similar to the previous
methods. Then, we train a special neural network
to model the conditional probability distribution
Pc(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn, o) and itera-
tively change the sequence state by this conditional

distribution. Intuitively, the network modeling the
conditional probability distribution aims to predict
unknown argument roles based on both sentence
semantics and some known argument roles. Af-
ter enough steps, the state of the sequence will
accurately follow the posterior joint distribution
P (x1, x2, . . . , xn|o), and the most frequent state in
history will be the best result of EAE.

Considering that it will take many steps to accu-
rately estimate the shape of the joint distribution
and each step uses neural networks for inference, it
is time-consuming and impractical. Due to what we
want for EAE is the max-likelihood state of the ar-
gument roles, we follow Geman and Geman (1987)
and adopt simulated annealing (Kirkpatrick et al.,
1983) to efficiently find the max-likelihood state
based on the Gibbs sampling.

To conclude, our main contributions can be sum-
marized as follows:

(1) Our NGS method combines both the advan-
tages of neural networks and the Gibbs sampling
method. The neural networks have shown their
strong ability to fit a distribution from data. Gibbs
sampling has remarkable advantages in perform-
ing Bayesian inference and modeling the complex
correlation among event arguments.

(2) Considering the shortcoming of high com-
plexity of the original Gibbs sampling algorithm,
we further apply simulated annealing to efficiently
estimate the joint probability distribution and find
the max-likelihood state for NGS.

(3) Experimental results on the widely-used
benchmark datasets ACE 2005 and TAC KBP 2016
show that our NGS works well to consider the cor-
relation among event arguments and achieves the
state-of-the-art results. The experiments also show
that the simulated annealing method can signifi-
cantly improve the convergence speed and the sta-
bility of Gibbs sampling, which demonstrate that
our NGS is both effective and efficient.

2 Related Work

Event Extraction (EE) aims to extract structured
information from plain text, which is a challeng-
ing task in the field of information extraction. EE
consists of two subtasks, one is event detection
(ED) to detect words triggering events and identify
event types, the other is event argument extraction
(EAE) to extract argument entities in event men-
tions and identify event argument roles. As EE is
important and beneficial for various downstream
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Figure 2: Overall framework of our Neural Gibbs Sampling model.

NLP tasks, e.g., question answering (Yang et al.,
2003), information retrieval (Basile et al., 2014),
and reading comprehension (Cheng and Erk, 2018),
it has attracted wide attentions recently.

ED has been well-studied by the previous works
due to its simple and clear definition, including
feature-based and rule-based methods (Ahn, 2006;
Ji and Grishman, 2008; Gupta and Ji, 2009; Riedel
et al., 2010; Hong et al., 2011; McClosky et al.,
2011; Huang and Riloff, 2012a,b; Araki and Mi-
tamura, 2015; Li et al., 2013; Yang and Mitchell,
2016; Liu et al., 2016b), neural methods (Chen
et al., 2015; Nguyen and Grishman, 2015; Nguyen
et al., 2016; Duan et al., 2017; Nguyen et al., 2016;
Ghaeini et al., 2016; Lin et al., 2018), the methods
with external heterogeneous knowledge (Liu et al.,
2016a, 2017; Zhang et al., 2017; Duan et al., 2017;
Zhao et al., 2018; Liu et al., 2018b). Some ad-
vanced architectures, such as graph convolutional
networks (Nguyen and Grishman, 2018) and ad-
versarial training (Hong et al., 2018; Wang et al.,
2019a), have also been applied recently.

As ED models has achieved relatively promis-
ing results, the more difficult EAE becomes the
bottleneck of EE, and have drawn growing re-
search interests. The early works (Patwardhan and
Riloff, 2009; Gupta and Ji, 2009; Liao and Grish-
man, 2010b,a; Huang and Riloff, 2012b; Li et al.,
2013) focus on designing hand-crafted features and
heuristic rules to extract event arguments, which
suffer from the problem of both implementation
complexity and low recall. As the rapid develop-

ment of neural networks, various neural methods
have been proposed, such as utilizing convolutional
models (Chen et al., 2015), utilizing recurrent mod-
els (Nguyen et al., 2016; Sha et al., 2018), and fine-
tuning pre-trained language model BERT (Wang
et al., 2019b). As compared with the early feature-
based and rule-based methods, neural methods au-
tomatically represent sentence semantics with low-
dimensional vectors, and independently determine
argument roles with the vectors, leading to getting
rid of designing sophisticated features and rules.
Recently, some works adopt some advanced tech-
niques to further improve EAE models in differ-
ent scenarios, including zero-shot learning (Huang
et al., 2018), multi-modal integration (Zhang et al.,
2017), cross-lingual (Subburathinam et al., 2019),
end-to-end (Wadden et al., 2019), and weak super-
vision (Chen et al., 2017; Zeng et al., 2018).

The current methods for EAE have achieved
some promising results. However, they focus on
independently handling each argument entity to
predict its role. Because of ignoring to capture
rich correlated knowledge among event arguments,
the above-mentioned methods are easy to trap in
a local optimum and make some inexplicable mis-
takes. Inspired by some methods in named entity
recognition (Huang et al., 2015) and relation extrac-
tion (Miwa and Bansal, 2016), some recent proac-
tive works view EAE as a sequence labeling prob-
lem. Following the methods for sequence labeling
problem (Ma and Hovy, 2016), these sequential
EAE models (Yang and Mitchell, 2016; Zeng et al.,



2018) adopt conditional random field (CRF) with
the Viterbi algorithm (Rabiner, 1989), and uninten-
tionally consider the correlation of event arguments.
Limited by the Markov property, the linear-chain
CRF sequentially considers the correlation between
two adjacent event arguments, which cannot ade-
quately handle the complex situation in EAE that
each argument and any other arguments may be
correlated. To this end and inspired by some proac-
tive works (Finkel et al., 2005; Sun et al., 2014), we
adapt Gibbs sampling (Geman and Geman, 1987)
for EAE to perform approximate inference from
the joint distribution. Moreover, we incorporate
simulated annealing (Kirkpatrick et al., 1983) to
accelerate the sampling process, leading to an ef-
fective and efficient method.

3 Methodology

3.1 Framework

For convenience, we denote X = {x1, . . . , xn}
and X−i = {x1, . . . , xi−1, xi+1, . . . , xn}. Fig-
ure 2 shows the overall framework of our Neural
Gibbs Sampling (NGS) method, consisting of the
following modules:

The neural models, including a prior neural
model to model the prior distribution Pp(xi|o), and
a conditional neural model to model the conditional
distribution Pc(xi|X−i, o). The prior neural model
is similar with existing EAE methods, which takes
the event mention text as input and outputs the
labels of event argument candidates. The labels
will serve as the prior state for the Gibbs sampling
module. The conditional neural model takes the
text and the results of the last step as input and
outputs the probability distribution over labels for
each event argument candidate.

The Gibbs sampling module to sample
variable assignments X with Pp(xi|o) and
Pc(xi|X−i, o), which gradually match the implicit
posterior joint distribution.

The simulated annealing method to efficiently
find the optimal state in the Markov chain of Gibbs
sampling. It uses a “temperature” parameter to
control the sharpness of the transition distribu-
tion. With the “temperature” decreasing, the al-
gorithm will more and more tend to choose the
max-likelihood state as the next state.

3.2 Neural Models

The Prior Neural Model is to model the prior
distribution Pp(xi|o). In this paper, we use DM-

CNN (Chen et al., 2015) and DMBERT as the prior
neural models. Given a sentence consisting of sev-
eral words {w1, . . . , t, . . . , wi, . . . , wn}, where t
and wi denote the trigger word and the candidate
argument entity respectively.

DMCNN transfers each word in the word se-
quence into an input embedding ei, which consists
of word embedding, event type embedding, and po-
sition embedding. Then, DMCNN feeds the input
embeddings into a convolutional encoding layer
to automatically learn the features and a dynamic
multi-pooling layer to aggregate the features into a
unified sentence observation embedding to predict
an argument role xi for wi.

DMBERT is a variation of BERT (Devlin et al.,
2019) proposed by Wang et al. (2019b). It adopts a
pre-trained BERT to represent the word sequence
as feature vectors and also uses a dynamic multi-
pooling mechanism like DMCNN to aggregate the
features into an instance embedding for prediction.
It inserts special tokens around the event argument
candidates to indicate their positions.

We sample an argument role following Pp(xi|o)
for each argument candidate and finally predict an
initial argument role state X(0) = {x(0)1 , . . . , x

(0)
n }

as the start point of Gibbs sampling. Note that, our
NGS method does not have any special require-
ments for the prior neural model, any other neural
networks can also be used.

Conditional Neural Model is to model the con-
ditional distribution Pc(xi|X−i, o) for the state
transition in Gibbs sampling. Considering that it re-
quires to integrate the argument role information of
X−i to compute Pc(xi|X−i, o), we set an argument
role embedding ai for each word wi to represent
whether it is an event argument and which role it
is of. Then, we modify the input layer of DMCNN
and DMBERT to feed the argument role embed-
dings in. More specifically, DMCNN concatenates
the original input embedding ei with the argument
role embedding ai as new inputs. DMBERT uti-
lizes the pre-trained parameters and adds ai into
the input embedding.

3.3 Gibbs Sampling Module

The Gibbs sampling module aims at sampling from
the implicit joint distribution P (X|o). As Algo-
rithm 1 shows, we use the prior neural model to
initialize an initial state X(0). In step t, for each
random variable xi, we input the other random
variables’ states X(t−1)

−i into the conditional neu-



Algorithm 1 Neural Gibbs sampling

Input: Initial state X(0) = {x(0)1 , . . . , x
(0)
n } pre-

dicted by the prior neural network
Result: N samples matching the joint distribution

P (X|o)
Train the conditional neural model to fit
Pc(xi|X−i, o)

for t← 1 to N do
// iteratively change the state
for i← 1 to n do

x
(t)
i ← sample

(
Pc

(
x
(t)
i |X

(t−1)
−i , o

))

end
X(t) ← {x(t)1 , . . . , x

(t)
n }

end
Return X(1), . . . , X(N)

ral model to get the distribution Pc

(
x
(t)
i |X

(t−1)
−i , o

)
.

Then we sample x(t)i from the distribution, and fi-
nally get the new state X(t). We can approximately
sample N samples X(1), . . . , X(N) with the Gibbs
sampling module. Our Appendix gives the proof
that the samples will accurately follow the joint
distribution after enough steps.

Geman and Geman (1987) have shown that the
samples from the beginning of the Markov chain
(the burn-in period) may not accurately follow the
desired distribution, hence we choose the most fre-
quent state from X(N

2
), . . . , X(N) as the result.

3.4 Simulated Annealing Method

The Gibbs sampling module is to accurately esti-
mate the shape of P (X|o), which will take many
steps to reach the convergence. As what we want
for EAE is only the max-likelihood state, we adopt
a simulated annealing method to efficiently find the
optimal state following Geman and Geman (1987).

As shown in Algorithm 2, in step t, the simulated
annealing method randomly sample an i from the

distribution
max
(
Pc

(
x
(t)
i |X

(t−1)
−i ,o

))1/c
∑n

j=1 max
(
Pc

(
x
(t)
j |X

(t−1)
−j ,o

))1/c . The

probability of i being chosen has positive corre-
lation with the probability of the max-likelihood
state in the conditional distribution of xi. Then
we only need to update xi with its max-likelihood
state in conditional distribution Pc

(
x
(t)
i |X

(t−1)
−i

)

modeled by the conditional neural model to get the
next state X(t), which is more efficient than the
original Gibbs sampling method. The simulated an-
nealing method adopts a time-varying parameter c

Algorithm 2 NGS + simulated annealing

Input: Initial state X(0) = {x(0)1 , . . . , x
(0)
n } pre-

dicted by the prior neural network
Result: The max-likelihood state X(N)

Train the conditional neural model to fit
Pc(xi|X−i, o)
c = 1
for t← 1 to N do

// randomly choose i to transit

i← sample

(
max

(
Pc

(
x
(t)
i |X

(t−1)
−i ,o

))1/c
∑n

j=1 max
(
Pc

(
x
(t)
j |X

(t−1)
−j ,o

))1/c
)

x
(t)
i ← arg max

(
Pc

(
x
(t)
i |X

(t−1)
−i , o

))

X(t) ← X
(t−1)
−i ∪ {x(t)i }

decrease c
end
Return X(N)

to control the sharpness of the distribution. With c
gradually decreasing, the algorithm more and more
tends to transit in the max-likelihood way and will
quickly reach the max-likelihood state. When c is
large, it performs like the original Gibbs sampling,
so that can avoid falling into suboptimal results.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate the proposed models on two real-world
datasets: the most widely-used ACE 2005 (Walker
et al., 2006) and the newly-developed TAC KBP
2016 (Ellis et al., 2015). They are both often used
as the benchmark in the previous works.

ACE 2005 1 is the most widely-used dataset in
EE, consisting of 599 documents, 8 event types, 33
event subtypes, and 35 argument roles. We eval-
uate our models by the performance of argument
classification. When testing models, an argument
is correctly classified only if its event subtype, off-
sets and argument role match the annotation results.
For fair comparison with the previous works (Liao
and Grishman, 2010b; Chen et al., 2015), we fol-
low them to use the same test set containing 40
newswire documents, the similar development set
with 30 randomly selected documents and training
set with the remaining 529 documents.

TAC KBP 2016 2 indicates the data of the TAC
KBP 2016 Event Argument Extraction track, which
is the latest benchmark dataset in EE. Different

1https://catalog.ldc.upenn.edu/LDC2006T06
2https://tac.nist.gov//2016/KBP/



from ACE 2005, this competition only annotates
difficult test data but no training data. Accordingly,
they encourage participants to construct training
data from any other sources by themselves. Con-
sidering the argument roles of TAC KBP 2016 are
almost the same with ACE 2005 expect TAC KBP
2016 merges all the time-related roles in ACE 2005.
We use the ACE 2005 dataset as our training data,
which is also provided to the participants of the
competition. Hence we can have a fair comparison
with the baselines.

For fair comparison with the baselines, we use
the same evaluation metrics with previous works:
(1) Precision (P), which is defined as the num-
ber of correct argument predictions divided by the
number of all argument predictions returned by
the model. (2) Recall (R), which defined as the
number of correct argument predictions divided
by the number of all correct golden results in the
test set. (3) F1 score (F1), which is defined as
the harmonic mean of the precision and recall. F1
score is the most important metric to evaluate EAE
performance.

4.2 Baselines

To directly show the improvement of our method
from the comparisons, we reproduce DMCNN and
DMBERT as baselines on both of the two datasets.
In addition, we also select some state-of-the-art
baselines on the two datasets respectively.

On ACE 2005, we compare our models with
various state-of-the-art baselines, including: (1)
Feature-based methods. Li’s joint (Li et al., 2013)
adopts structure prediction to extract events, which
is the best traditional feature-based method. RBPB
(Sha et al., 2016) adopts a regularization-based
method to balance the effect of features and pat-
terns, and also consider the relationship between
argument candidates. (2) Vanilla neural network
methods. JRNN (Nguyen et al., 2016) jointly con-
ducts event detection and event argument extrac-
tion with bidirectional recurrent neural networks.
(3) Advanced neural network method with external
information. The dbRNN (Sha et al., 2018) uti-
lizes a recurrent neural network with dependency
bridges to carry syntactically related information
between words, which considers not only sequence
structures but also tree structures of the sentences.
The HMEAE (Wang et al., 2019b) leverages the la-
tent concept hierarchy among argument roles with
neural module networks, which considers the label

Learning Rate 10−3

Batch Size 60
Dropout Probability 0.5
Hidden Layer Dimension 300
Kernel Size 3
Word Embedding Dimension 100
Position Embedding Dimension 5
Event Type Embedding Dimension 5
Argument Role Embedding Dimension 5

Table 1: Hyperparameter settings for CNN models.

Learning Rate 6× 10−5

Batch Size 50
Warmup Rate for the Prior Neural Model 0.1
Warmup Rate for the Conditional Nueral Model 0.05
Argument Role Embedding Dimension 768

Table 2: Hyperparameter settings for BERT models.

dependency but still classify each event argument
independently.

On TAC KBP 2016, we compare our models
with the top systems of the competition, includ-
ing: DISCERN-R (Dubbin et al., 2016), CMU
CS Event1 (Hsi et al., 2016), Washington1 and
Washington4 (Ferguson et al., 2016).

4.3 Hyperparameter Settings

Our methods with DMCNN and DMBERT as the
prior and conditional neural networks are named as
NGS (CNN) and NGS (BERT) respectively. They
both transit for 200 steps and the c linearly decrease
from 1 to 0. As our work focuses on extracting
event arguments and their roles and our methods do
not involve the event detection stage (to identify the
trigger and determine the event type), we conduct
EAE based on the event detection models in (Chen
et al., 2015) and (Wang et al., 2019a) for the CNN
and BERT models respectively.

For NGS (CNN), the hyperparameters of the
prior and conditional neural networks are set as
the same as in the original DMCNN (Chen et al.,
2015). We also use the pre-trained word embed-
dings learned by Skip-Gram (Mikolov et al., 2013)
as the initial word embeddings. The detailed hyper-
parameters are shown in Table 1.

For NGS (BERT), the two BERT models for
the prior and conditional probability distributions
are both based on the BERTBASE model in Devlin
et al. (2019). We apply the pre-trained model 3 to
initialize the parameters. To utilize the event type
information in our model, we append a special to-
ken into each input sequence for BERT to indicate

3github.com/google-research/bert

github.com/google-research/bert


Method
Trigger

Classification
Argument Role
Classification

P R F1 P R F1
Li’s Joint 73.7 62.3 67.5 64.7 44.4 52.7
DMCNN 75.6 63.6 69.1 62.2 46.9 53.5
RBPB 70.3 67.5 68.9 54.1 53.5 53.8
JRNN 66.0 73.0 69.3 54.2 56.7 55.4
HMEAE (CNN) 75.6 63.6 69.1 57.3 54.2 55.7
DMBERT 77.6 71.8 74.6 58.8 55.8 57.2
dbRNN 74.1 69.8 71.9 66.2 52.8 58.7
HMEAE (BERT) 77.6 71.8 74.6 62.2 56.6 59.3

NGS (CNN) 75.6 63.6 69.1 61.3 51.3 55.9
NGS (BERT) 77.6 71.8 74.6 59.9 59.1 59.5

Table 3: The overall EAE results (%) of various base-
lines and NGS on ACE 2005. EAE performances are
influenced by the trigger quality, hence we also provide
the trigger classification (event detection) results. Note
that as our work does not involve the event detection
stage, the NGS (CNN) and NGS (BERT) use the trig-
gers predicted by DMCNN and DMBERT respectively.

Method
Argument Role
Classification

P R F1

DISCERN-R (Dubbin et al., 2016) 7.9 7.4 7.7
Washington4 (Ferguson et al., 2016) 32.1 5.0 8.7
CMU CS Event1 (Hsi et al., 2016) 31.2 4.9 8.4
Washington1 (Ferguson et al., 2016) 26.5 6.8 10.8
DMCNN (Chen et al., 2015) 17.9 16.0 16.9
HMEAE (CNN) (Wang et al., 2019b) 15.3 22.5 18.2
DMBERT (Wang et al., 2019b) 22.6 24.7 23.6
HMEAE (BERT) (Wang et al., 2019b) 24.8 25.4 25.1

NGS (CNN) 21.5 16.2 18.5
NGS (BERT) 25.5 25.1 25.3

Table 4: The overall EAE results (%) of various base-
line methods and our NGS on TAC KBP 2016 Event
Argument Task. All the models use golden triggers.

the event type. Additional hyperparameters used in
our experiments are shown in Table 2.

4.4 Overall Evaluation Results

The overall results of various baseline methods and
NGS on ACE 2005 are shown in Table 3. And the
results on TAC KBP 2016 are shown in Table 4.
From the results, we observe that:

(1) NGS (CNN) and NGS (BERT) achieve sig-
nificant improvements as compared with DMCNN
and DMBERT respectively. Meanwhile, our mod-
els still outperform other baseline methods, which
are either the typical EAE models or the recent
state-of-the-art models. It indicates that our Gibbs
sampling with simulated annealing works well to
improve EAE with the help of adequately model-
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Figure 3: F1-step curves of NGS (CNN) with the sim-
ulated annealing method and the original Gibbs sam-
pling on ACE 2005 (left) and TAC KBP 2016 (right).

ing the correlation between event arguments. This
demonstrates that our method is effective.

(2) As NGS enhances both CNN models and
BERT models on different datasets, it shows that
our Gibbs sampling with simulated annealing is
independent of EAE models. In other words, our
method can be easily adapted for other EAE models
to enhance their extraction performances.

(3) From the experimental results on both ACE
2005 and TAC KBP 2016, we can find that the re-
call scores and F1 scores of our models are much
better than the baseline models. The precision
scores of our models do not achieve such obvi-
ous improvements. This is consistent with what we
mention in the previous sections.

We argue that the baseline models focusing on
independently handling each event argument can-
didates may sever the constraints among argument
roles, and may trap in a local optimum or over-fit
the training set. The models without considering ar-
gument correlations may predict various argument
roles with high confidence, even make some inex-
plicable mistakes. Hence the precision scores of
these models may increase, but their recall scores
and F1 scores may decrease.

Our models adopt Gibbs sampling for EAE to
perform approximate inference from the joint dis-
tribution, and make the most of the corrleation and
constraints among argument roles. Accordingly,
our models can avoid these issues and achieve the
state-of-the-art results.

4.5 Ablation Study

In order to verify the effectiveness of our method,
especially for the simulated annealing method and
the prior neural network, we conduct ablation stud-
ies on ACE 2005 and TAC KBP 2016.

Effectiveness of the Simulated Annealing
To demonstrate the effectiveness of the simulated
annealing method, we show the F1-step curves of



Type: Justice Subtype: Appeal

Text: Malaysia’s second highest court on Friday rejected an appeal by ... Anwar Ibrahim
against his conviction and nine-year prison sentence for sodomy.

Event Argument Candidate Malaysia court Friday Anwar Ibrahim sodomy

DMCNN PlaceX AdjudicatorX Time-WithinX PlaintiffX N/A×

NGS (CNN) PlaceX AdjudicatorX Time-WithinX PlaintiffX CrimeX

Table 5: Top: An example sentence highlighting the event argument candidates, which is sampled from ACE 2005.
Bottom: EAE results of DMCNN and NGS (CNN). NGS (CNN) correctly classifies “sodomy” into Crime with
the help of correlations among event arguments.
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Figure 4: F1-step curves of NGS (CNN) with prior neu-
ral network initialization and random initialization on
ACE 2005 (left) and TAC KBP 2016 (right).

Gibbs sampling with and without the simulated
annealing in Figure 3. We can observe that:

(1) The simulated annealing method can signifi-
cantly improve the convergence speed and the sta-
bility. Our methods just require quarter to half of
the steps to reach the convergence.

(2) The simulated annealing method does not
weaken the performance of our models. Although
the methods with the simulated annealing are much
more efficient than those without the simulated
annealing, their results are comparable.

Effectiveness of the Prior Neural Network

As the mathematical proof in the Appendix shows,
a prior distribution is not necessary for Gibbs sam-
pling. To demonstrate the effectiveness of the prior
neural model, we show the F1-step curves of the
prior neural model initialization and a random ini-
tialization for our NGS method (with simulated
annealing) in Figure 4. As it shows in figures,
our NGS models with the prior neural network
initialization take much fewer steps to reach the
convergence than those models with random initial-
ization, which is important and meaningful for the
application. Combining the prior neural network
initialization and the simulated annealing for our
NGS will lead to a more efficient model.

#arguments 1-2 3-4 >5
DMCNN 55.3 54.1 61.8
NGS (CNN) 56.7 (+1.4) 57.9 (+3.8) 69.5 (+7.7)

Table 6: F1 scores (%) of DMCNN and NGS (CNN)
on different parts of ACE 2005 dev set with different
event argument numbers per sentence.

4.6 Analysis on Modeling Event Argument
Correlations

To analyze whether NGS can successfully capture
the event argument correlations and further im-
prove EAE performance, we conduct a case study
in Table 5 and a quantitative analysis in Table 6.

The sentence in Table 5 is a real sentence con-
taining an Appeal event, which is sampled from
the test set of ACE 2005. From the EAE results,
we can see that the vanilla DMCNN correctly clas-
sifies most of the event argument candidates. But
because “sodomy” is a rare word, it misclassified
“sodomy” into “N/A” (not an event argument). With
the help of our NGS method’s ability to model the
joint distribution among event arguments, NGS
(CNN) can infer that “sodomy” is a crime from the
event argument correlations as it has known there
are some crime-related arguments (adjudicator and
plaintiff) in the sentence.

On the other side, we show the comparisons be-
tween the basic model DMCNN and NGS (CNN)
on data with different numbers of event arguments
in Table 6. With the increase of event argument
number, our improvements significantly rise, which
demonstrates our improvements come from model-
ing the correlations among event arguments. Note
that the F1 scores are higher than the overall F1
scores, which is due to we filter out the negative
instances without event arguments.



5 Conclusion and Future Work

In this paper, we propose a novel Neural Gibbs
Sampling (NGS) method to adequately model the
correlation between event arguments and argument
roles, which combines the advantages of the Gibbs
sampling method to model the joint distribution
among random variables and the neural network
models to automatically learn the effective repre-
sentations. Considering the shortcoming of high
complexity of Gibbs sampling algorithm, we fur-
ther apply simulated annealing to accelerate the
whole estimation process, which lead our method
to being both effective and efficient.

The experimental results on two widely-used
real-world datasets show that NGS can achieve
comparable results to existing state-of-the-art EAE
methods. The empirical analyses and ablation stud-
ies further verify the effectiveness and efficiency of
our method. In the future: (1) We will try to extend
NGS to other tasks and scenarios to evaluate its
general effectiveness of modeling the latent corre-
lations. (2) We will also explore more effective and
simple methods to consider the correlations.
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A Proof of the Convergence of Gibbs
Sampling

In this section, we will prove the convergence of
Gibbs sampling, by which we implement sampling
from the implicit joint distribution in this paper.

Suppose that X = (X0, · · · , Xn, · · · ), Xi ∈
E ⊆ Rn is a Markov chain (abbr. MC). For
a ν-measurable set A, the transition kernel of A,
K : E × E → Rn is defined via the following
equation,

K(Xi, A) = P {Xi+1 ∈ A|X0, · · · , Xi} (1)

Assume that X satisfies that for any σ-finite
Borel measure ν on Rn, for any ν-measurable set
A, we have that,

P (Xi ∈ A|Xi−1 = x) =∫

A
K(x, y)dν(y) + χA(x)r(x)

(2)

where

r(x) := 1−
∫

E
K(x, y)dν(y)

A fundamental property of K is sub-stochastic.
Assume that K is non-degenerate, hence r(x) < 1
for all x ∈ E. Then, following the convention, we
can define the iterative form as,

K(t)(x, y) =

∫

Rn

K(t−1)(x, z)K(z, y)dν(z)

+K(t−1)(x, y)r(y) + [1− r(x)]t−1K(x, y)
(3)

Define the invariant distribution as π(X) for this
MC and D = {x ∈ E;π(x) > 0}. We know that
π(X) must satisfy that, for any ν-measurable set
A,

π(A) =

∫
P (X1 ∈ A|X0 = x)π(x)dν(x) (4)

For ν-measurable A, K is called π-irreducible
when for all x ∈ D,π(A) > 0, and is called
aperiodic when there exists no partition E =
(E1, · · · , Ek−1) such that P(Xi+1 ∈ Aj+1|Xi ∈
Aj) = 1 for all j = 1, · · · , k − 1 (mod k). Due
to the work of Nummerlin (1984) and Tierney
(1991), we have the following theorem: If K
is π-irreducible and aperiodic then, for all x ∈ D.

1.
∣∣∣K(t)

x − π
∣∣∣→ 0 as t→∞;

2. for real-valued, π-integrable function f ,

t−1 {f(X1) + · · ·+ f(Xt)}

→
∫

E
f(x)π(x)dν(x) a.s. as t→∞

where following the conventional transformation
between multi-variable functions and parameter
families, K(t)

x is defined as K(t)
x (y) := K(t)(x, y).

Indeed, with respect to ν, it is the density of Xt

provided that X0 = x, excluding the realizations
Xj = x, j = 1, · · · , t.

Let P(X) = P(X1, · · · , Xn) denote the target
density in our case. What we shall prove is that
this P(X) is the invariant distribution of the MC
constructed by Gibbs sampling. Provided with the
theorem above, the remaining key issue is to prove
that the transition kernelK satisfies π-irreducibility
and aperiodicity.
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Equipped with the product measure, for the
blocking x = (x1, · · · , xn), it is required that the
conditionals of Gibbs sampler construction,

π(xi|x−i) =
π(x)∫

π(x)dνi(xi)

are well-defined over the appropriate regions,
where X−i shares the same definition as Sec.(2).
With D = {x ∈ E;π(x) > 0}, we seek to con-
struct the kernel as K : D ×D → Rn via

K(x, y) =

{∏n
i=1(π(yi|xj,j>i, yj,j<i)) if Υ

0 otherwise

where Υ denotes the condition that

π(y1, · · · , yi, xi+1, · · · , xn)dνi(yi) > 0

It is then straightforward to check that, when
K(x, y) is well-defined, π is an invariant distri-
bution of the chain attained by K.

Observe that since we have a discrete distribu-
tion, it is trivial that all the subjects here are well-
defined. Also the aperiodicity of K is ensured by
the fact that K(x, x) > 0 for all x ∈ D.


